课题概况
课题组织(2013年9月调… 01-11
课题组织(13年3月调整… 03-03
课题网站架构 03-06
课 题 组 织 03-06
江苏省教育科学“十二五… 03-05
江苏省教育科学“十二五… 03-05
江苏省教育科学“十二五… 03-05
  最新文章
评价表(张志清) 12-16
《司马迁发愤写史记》案… 12-16
《彭德怀和他的大黑骡子… 12-16
《狼和小羊》教学设计稿… 12-16
《莫高窟》教学设计(张… 12-16
《第3课 版面设计》教… 12-16
表情丰富的脸 (教学设… 12-16
您现在的位置: 首页 >>充分发挥学科教学过程性价值的策略研究>>理论学习>>理论学习6(冯菲菲)
理论学习6(冯菲菲)
发布时间:2015-01-05   点击:   来源:   作者:冯菲菲

1、  以数学知识的内在结构作为育人资源

“新基础教育”研究提出了“要通过教学实现学科对于学生发展的独特的价值”-,这一目标与任务是高远而又平实的。高远在于最终要让学生建立起独特的思维方式,平实在于这样的思维方式需要通过每天每节课教学的渗透才能得以建立。那么,有没有实现这一目标的可能呢?

在研究的初期,我们发现几乎没有实现的可能!因为在课堂上,教师常常只局限在教学种形式上的改革。以小学数学的计算教学为例,由于当时的教材按照计算形式和结果的不同,将计算知识的整体分为不同的类型:如口算和笔算,按法则依次运算和简便运算,精确运算和估算等等。教材还按知识的难易程度,以一个个知识点,配置一个个例题的形式进行编排。教师在教学时,遵循教材的体例,一个知识点一个例题孤立地进行。课堂上虽然有了方法多样、提问质疑、小组讨论等学生“主动”活动的形式,但是,透过这种“主动”形式,可以发现学生思维的深处是“被动”的应付和服从:教师教学简便运算的方法时,学生不会出现估算的方法;教师教学估算的方法时,学生不会用简便运算的方法。如此按照书本知识一个知识点一个例题的教学方式,使得学生同样很会“配合”教师,他们会围绕着知识点质疑讨论、思考多种方法。这种为方法而方法、为质疑而质疑、为讨论而讨论的教学形式,实质还是“教”学生机械地掌握计算方法,“育”出以被动适应为基本生存方式的人。

为了让学生的思维真正地主动起来,“育”以主动发展为基本生存方式的人,“新基础教育”意识到应该以数学知识的内在结构作为育人资源,树立数学教学的整体结构观。因为结构具有较知识点要强得多的组织和迁移能力,不仅可以使学生对结构相关的知识牢固掌握、熟练运用并加以内化,更为重要的是,通过结构的学习,可以使学生因结构的支撑而乐于、善于主动的猜想与类比,促使学生的思维真正地主动投入,形成主动学习的心态与能力。在此基础上,还可进一步使学生具有发现、形成结构的方法及掌握和灵活使用结构的能力。关于结构的教学,我们采用“长程两段式”的教学策略:首先需要对现有教学内容进行重组,按数学知识内在的逻辑组成结构链;其次需要教师打破原来的一个知识点一个例题“匀速运动”的教学方式,将每一结构单元的学习分为“教学结构”阶段和“运用结构”阶段。在“教学结构”阶段,主要采用归纳发现的方式,让学生从现实的问题出发,充分的体验发现和建构,逐渐形成知识结构和学习的方法与步骤结构。这一阶段的教学时间可以适度放慢。在“运用结构”阶段,主要让学生运用结构进行主动的猜想、类比与验证。由于学生已经能够掌握和灵活运用结构进行主动学习,这一阶段的教学的时间可以加速的方式进行。

以小学数学的加、减、乘、除法的笔算教学为例,教师要确立融口算、笔算、简算、估算为一体的整体意识,以教学笔算的运算结构为主线,将其它各种计算方法渗透在其中。在教学加法笔算的运算结构时,以“教学结构”的方式为主;在教学其它方法的笔算结构时,以“运用结构”的方式为主。我们期望达到的目标不仅是学生对运算结构的掌握和灵活运用,更为重要的是,提高教师数学教学的整体意识,努力创造条件,提供各种学生活动的机会,学会以捕捉学生所生成的资源作为契机,将口算、简算、估算等方法综合地渗透在教学中,以培养学生快速判断和灵活选择方法的意识与能力。我们认为,首先,融各种计算方法为一体的计算教学是载体,它为培养学生灵活判断和选择的能力服务,为培养学生整体把握问题的能力服务。其次,融各种计算方法为一体的计算教学,为学生学会根据具体情境和条件进行判断、并灵活选择相应的计算方法提供了舞台和发展的空间,使学生有意义的学习和灵活运用各种计算方法成为可能。这样既可以使学生的思维得到主动地发展,又可以使计算教学的知识目标水到渠成地得到落实。

2、以数学知识创生和发展的过程作为育人资源

以往的数学教学比较重视数学知识的记忆与应用,教学中重演绎轻归纳,学生只知道记忆符号,疲于模仿与操练,却不知道知识的来龙去脉。以数学知识创生和发展的过程作为育人资源,不但可以让学生了解数学知识的来龙去脉,而且可以让学生在学习过程中经历和体验数学知识的创生和发展的过程,感受数学的基本思想和方法,感受数学的抽象和力量,形成学习数学的内驱力,并逐渐建立起独特的思维方式,这是其它学科无法替代的、惟有数学学科所独有的教育价值。

要还数学知识创生和发展过程的本来面目,还需要通过将教材知识点按其被发现、发展的过程进行重组与加工,实现书本知识与数学知识创生和发展过程的沟通。

例如,中学数学几何中关于“全等三角形的判定定理”的教学,传统教材不是按照人们发现判定定理的过程来叙述的,而是把发现的结果(四个判定定理),按照一个课时教学一个定理一个例题一组练习的形式加以编排,并且以演绎的方式呈现在学生的面前。这样的呈现方式,首先是容易导致学生死记硬背和机械的练习;其次是容易导致学生是为学习这些判定定理而存在的;更为重要的是,容易导致学生思维的压抑和被动。因为它对学生的学习需要缺乏关注;对学生如何经历与体验全等三角形判定定理的发现过程缺乏关注;对学生如何进行有意义的学习缺乏关注。也就是对学生学习全等三角形判定定理的有机过程与价值缺乏思考和研究。

为了还全等三角形判定定理发现、发展过程的本来面目,我们在实验中首先分析了学生已有的学习经验,以及在学习中经常会出现的困惑和需要解决的前提性问题。如确定一个三角形至少需要几个条件?全等三角形的判定定理中至少需要有几个条件?三角形的边与角按照三个条件的组合共有多少种?在诸多的组合中(共有六种)是否都能成为判定定理?等等。然后对教材内容按其被发现、发展的过程进行了重组与加工:在第一教时,着重让学生从整体感知,了解全等三角形判定定理的来龙去脉,经历观察、发现、猜想、验证、归纳和概括等数学活动,体验全等三角形判定定理的形成过程,感受渗透其中的数学思想和数学方法,感受从偶然到必然、从特殊到一般的归纳发现的思维方式。在第二或第三教时,着重让学生对判定条件进行快速判断和对判定定理的灵活选择,及掌握运用判定定理进行证明时的书写格式。第一教时的教学设计,采用归纳发现的方式进行教学。首先,提出判定三角形全等的前提性问题,以激发学生的学习需要和求知欲望;接着,可以两人合作的形式,选择六种组合中的一至两种组合进行猜想和实验验证;然后,全班交流,归纳概括,得出六种组合中的四种能够成为判定定理的结论。在这里,其中的两种不构成判定定理的组合,将成为学生形成正确认识的重要资源。

如果我们把全等三角形判定定理的教学,放到整个中学几何的判定定理的知识结构中去,这样的教学方式都能适用,并且,可以采用“长程两段式”的教学策略,在中学几何出现判定定理的一开始,以“教学结构”为主,后面的判定定理的学习就可以让学生“运用结构”进行主动的思考、猜想和发现。我们认为,这样教学对于学生发展的价值在于:不仅让学生整体感知和了解判定定理的来龙去脉,形成有意义的认识,而且让学生经历和体验判定定理的形成过程,感受数学的思想和方法。更为重要的是,学生掌握了判定定理的知识结构和学习方法结构,在以后的判定定理的学习时,就有了主动的猜想和类比的可能,这对学生主动的思维和形成主动的学习心态都是十分重要的。

在实验中,我们不但从知识的角度,以数学整体和内在的知识结构、数学知识创生和发展的过程作为育人资源,而且还从人的角度,以数学发明与创造的人和历史作为育人资源,以学习数学的学生的基础和生活经验作为育人资源。


    附件:
关闭窗口
打印文档
 
版权所有:江苏省常州武进湟里中心小学┋ 联系电话:0519-83348221┋ 传真:0519-83341021
备案序号:苏ICP备05079923号 技术支持: 常州万兆

苏公网安备 32041202001099号