4.设计应用型的问题
数学知识源于生活而最终服务于生活,现实生活是数学的源泉,数学问题是现实生活数学化的结果。在新课程理念下,教师要认真钻研教材,灵活利用教材,并从现实生活中挖掘数学现象,经过加工,使它能为课堂服务,使学生真正感受到“数学就在我们身边”。 如一位教师教学“比例的知识”,带学生到操场实地观测并求旗杆高度,现场讨论。
生1:我认为可以把旗杆放倒,量它的高度。
全班学生哄然大笑,纷纷说: “把旗杆放倒,你给立上去啊?”教师也在旁边说:“嗯,这种方法不行!”
生2:我观察了一下,这个旗杆跟旁边的教学楼的三楼差不多高,我可以先量一层楼的高度,然后再乘以3,就可以得到旗杆的高度了。
师:我们来讨论一下,这样算出的答案准确率有多高?
学生讨论了3分钟有余,得出这种方法不行。
生3:把旗杆上的绳子剪断,放下来,然后量出绳子的长度,除以2,就可以得到旗杆的高度了
学生提了很多个性化的方法,教师都组织同学对不足的地方进行了分析,最终认定“这种方法不行”。经历了几次这样的讨论和否定后,学生的积极性降低了许多。最后在教师的引导下懂得了:“同时同地。旗杆高:竹竿高=旗杆影长:竹竿影长”的“正确”方法。
开放性讨论,即使出现“无稽之谈”,也宜进行鼓励和引导,最忌全盘否定,抑制学生的思维,或“只批不立”的评价。教师要听完再进行适度的分析,引导学生对自己所提方案的可行性和优缺点进行理性反思,并将重点放在提出改进意见上。这样,学生才不会因怕挨批评而放弃可能的创造性解答,那些初看起来似乎荒谬而又真正体现创造性的想法才不至于被扼杀。如:生。能把不易测量的垂直高度转化为易测量的水平长度,可改进为用一根比旗杆略短的竹竿和一把卷尺完成;生,能很好地根据具体环境用比较实际和实用的方法来求旗杆的高度,在某种意义上这样的方法比用比例的知识解更容易让人接受,真正体现这位学生善于观察、类比的良好思维品质;生,能将量旗杆的高度,转化为量旗绳的长度,可改进为:先在绳子上做一个记号,边拉动绳子边量,拉了一圈,就可以得出绳子的长度,再除以2 就求出旗杆的高度了。
5.设计开放型的问题
开放性问题的情境要有实际意义,要突出主题.还要有一定的思考价值和启发性,能激发学生探索的意识.密切联系学生的生活经验与知识经验。教师设计的问题应该简练、明确.并根据学生在课堂上的反应来调控。如在教学北师大版二年级下册 “三位数加法”时,有位教师创设了这样的情境: “今年国庆节,王老师一家(两个大人,一个小孩)准备到武夷山旅游。从厦门到武夷山坐火车,成人票每张155 元,学生票每张114元。从厦门到武夷山乘飞机,成人票每张600 元.学生票每张300元。老师全家准备在武夷山住一天,住宿费是每人每天80元。请你帮老师设计一种旅游方案,说说你的理由,并计算出这次旅游大约要花多少钱。”学生先独立思考和计算,再进行反馈:有的提出为了节约开支,最好是往返都坐火车;有的认为坐火车既累又浪费时间,最好往返都乘飞机;有的认为去的时候人不累可以乘火车,回来的时候最好乘飞机,否则太累了,不利于接下来的学习和工作。在计算大约要花多少钱时,也出现了不同的解法;有的先计算每人花的钱再将三个人的加起来;有的计算两个大人花的钱再加上小孩的;有的先计算往返的路费再加上住宿费;等等。这样的开放情境有利于学生积极开展多角度、多维度的思维活动,在掌握知识、运用知识的同时,提高了思维的合理性、广阔性和敏捷性。
6.设计拓展型的问题
所谓拓展型问题是相对于命题的结构而言的,即已知条件比较隐蔽,结论也不直接给出,要求学生通过观察、比较、分析、联想、概括、推理、判断等一系列探究活动,逐步得出结论。拓展型问题具有多向性、变异性的特点,在思维方面注重举一反三、触类旁通。在课堂教学中设计这样的问题,既能激发学生的学习兴趣,又能启发学生的发散性思维,从而培养学生思维的广阔性、灵活性和创造性。在分数、小数互化单元,学生已经知道判断一个最简分数能否化成有限小数的方法,并能据此正确地作出判断。可在课堂上有学生提出:“老师,这种判断方法的道理何在?”我很高兴,说明学生不满足于现成的答案,有寻根究底的精神。我顺势作了讲解:“大家都知道,分母是10、100、1000……的分数可以直接写成一位小数、两位小数、三位小数……如最简分数3/8,因为8=2×2×2,所以只要将它的分子、分母分别乘3个5后,即可化成分母是1000的分数。又如17/25,因为25=5×5,所以只要将它的分子、分母分别乘两个2之后,就可化成分母是100的分数。再如41/120,120=2×2×2×5×3,因为有质因数3的存在,无论将分子、分母乘多少个2或5,也无法将其化成分母是10、100、1000……的分数,所以41/120不能化成有限小数。”至于为什么必须是最简分数,我又举一例:“21/60,60=2×2×3×5,初看不能化成有限小数,但因为60与21还有公有的质因数3,可以约分化简为7/20,所以这个分数也能化成有限小数。”经过我的解释,学生都理解了判断方法的来由。这是学生对数学结论,从知其然到知其所以然的一种拓展。